X 33

Rockwell Technology Demonstrations Phase I

Reusable Cryogenic Tank System

Reusable Cryogenic Tank System Major Products

McDonnell Douglas

• DC-XA Graphite-Composite LH₂ Tank System

• Composite Tank Component Level Tests

Russian Al-Li LO₂ Tank System (2)

• Cryogenic Insulation

• Health Management

Description

- NASP Task D Tank Materials
- Tank and Internal Cryogenic Insulation (3-D)
- Hand Layup
- Autoclave
- Qualify Then Flight Test
- Compatibility/Ignition Criteria
- Permeability
- Life-Cycle Test
- Y-Joint Development
- Stiffener Development
- 1460 Alloy
- Tank and External Cryogenic Insulation
- Ground: Integrate TPS Panels
 Life-Cycle Test
- Flight: Qualify Then Flight Test
- External Foam Development
 - Reusability (Integrity, Adhesion, Cryopumping, etc.)
- Internal Foam Development
 - 3-D (Saturn S-IVB)
 - Reusability (Integrity, Adhesion, etc.)
 - Inspectability
- Integrate On Above Tanks
- Basic Characterization Tests on all Components (Fibers, Coatings, Sensors, etc.) Associated With Health Management
- Integrated On Above:
 - Embedded Sensors
- Data Processing System

Ground

Flight

Reusable Cryogenic Tank System Major Products

Rockwell

• Graphite-Composite LH₂ Tank System

Description

- Building Block Approach
 - Materials Development
 - Panels and Elements
- 8-Foot Diameter Tank/Insulation/TPS Panels
 - Autoclave Versus Non-Autoclave
 - Automatic Fiber Placement
- Life-Cycle Test

• Cryogenic Insulation

- External Foam Development
- Process Development
 - Repairs, etc.

• NDE/Health Management

- Screen Equipment and Sensors
- Integrate on Above Test Article

Composite Primary Structures

Graphite-Composite Primary Structure

McDonnell Douglas

• DC-X Intertank

Conical Ground Test Intertank

- Russian Isogrid Intertank
 - Academy of Sciences
- Control Surfaces
 - Ceramic Matrix Composite (CMC)

Description

- Cyanate Ester Composite
- Shell Construction
- Cryogenic Interface
- Qualification Test
- 1/4 Scale of DC-Y
- Skin-Stringer
- Doors, Cryogenic Interfaces
- Integrate TPS
- Combined Loads Testing (Life Cycle)
- Quartz Lamps Testing
- Damage Tolerance
- Same Except Isogrid
- Filament Wound
- No TPS
- Scale Component
- Elevon or Tip Fin
- High Temperature/Light Weight
- Structural Performance

10'

Advanced Structures and TPS Technologies

.

Graphite-Composite Primary Structure

Rockwell

Description

General

High-Temperature Polyamides (AFR–700, etc.)

Intertank

- 1/4 Segment of Full Scale Rockwell SSTO
- Doors, Cryogenic Interfaces
- Combined Loads
- Damage Tolerance
- Integrated Health Monitoring

• Thrust Structure

- Segment of Full Scale Rockwell SSTO
- Engine Mount
- Fiber-Toughened Composites/Pultruded Rod Racks
- Integrated Health Monitoring
- Acoustic and Combined Loads
- Life-Cycle Test and Test to Failure (2 Articles)
- Damage Tolerance

Wing

- Wing Box Section of Full Scale Rockwell SSTO
- TPS Integration
- Wing/Tank Interface
- Integrated Health Monitoring
- Combined Loads
- Damage Tolerance

Advanced Structures and TPS Technologies

Thermal Protection Systems

Advanced Thermal Protection Systems

McDonnell Douglas

• Internal Multi-Screen Insulation (IMI)

- MAN Technologies (HERMES)

- TPS Panel Design
- Metallic Prepackaged TPS

•C/SiC Standoff TPS

• NDE/Health Monitoring

Description

- Verify Concept
- Thermal/Acoustic, and Humidity Testing
- IMI Assessment Decision
- Conceptional Design
- Design, Fabricate, and Test TPS Panels
- Coatings (AS&M)
- Thermal Performance Testing (Arc-jet)
- Environmental Testing (Acoustic, Wind/Rain, Frost/Ice, Impact)
- Fail-Safe Attachments
- Single Panels and Arrays Integrated With Cryotank/Structure
- Design, Fabricate, and Test TPS Panels
- Environmental Testing (Acoustic, Wind/Rain, Frost/Ice, Impact)
- Fail-Sage Attachments
- Single Panels and Arrays Integrated With Cryotank/Structure
- Integrate With Above Tests

Thermal Protection Systems Technologies

44.0000 🚄

Advanced Thermal Protection Systems

Rockwell

Fluted Core Flexible TPS Blankets
 With Textile Products

- Advanced Flexible TPS With Multi-Layer Insulation
- Waterproofing

• TPS Attachment Techniques

• NDE/Health Monitoring

Description

- TABI
 - Reestablish Manufacturing
- Thermal Performance Tests (Arc-jet)
- Environmental Testing (Vibro-Acoustics, Wind/Rain, Frost/Ice, Impact, Repaired Panels)
- Radiation Shield
- CFBI
- Same Tests as Above
- Rigid and Flexible TPS
- Low-Cost/Manpower Techniques to Re-Waterproof
- Environmentally Acceptable
- Significant Effort Also In-House
- Direct Bond (Strain Isolation Pad)
- Velcro
- "Top Hat" Cover to Tiles
- Integrated With Above Tests
- Integrated With Above Tests
 - Flaw Detection and De-Bonds
 - Integrity
 - Water Content
 - Integrate With/Cryo Tank and Composite Structures

Not to Scale

Thermal Protection Systems Technologies

X-33 Task 4

Complementary Technology Demonstrations

Technology Demonstrations

Objective:

- Focused Technology Demonstrations that are Requried to Achieve a Successful X-33 / RLV Concept Downselection & Phase II Initiation
 - Major Products Complete in 15 mos. (Prior to Downselect)
- Tasks in Addition to On-Going Technology Demonstration Efforts
 - Several Industry Wide Reviews Prior to CAN Release
 - Fill the Technology "Gaps" as Viewed by Industry Partners
 - Limited to Task 1-3 Selectee's (Concept Design): Focused Technology
- Selection Criteria Categories / Priorities
 - (1) Configuration Specific Technologies
 - (2) Configuration Independent, Enabling Technologies
 - (3) Configuration Independent, Enhancing Technologies

X 33

Selected Task 4 Demonstration Areas

Operations

- Integrated Avionics/GN&C
- Integrated Vehicle Health Management
- Adaptive / Automated Mission Design/Planning
- Autonomous Abort
- Informed Vehicle Maintenance
- EMA's & Power Sources

• Reusable Cryogenic Tank System

- Lined Gr-Ep Tanks & Insulations
- K3B Thermoplastic Tanks

• Thermal Protection Systems

- Leading Edge & Durable Thermal Seals/Barriers
- Metallic TPS
- Mechanical Attachments

Propulsion

- Integrated Lifting Body/Aerospike Cold Flow Wind Tunnel & CFD (complementary to SR-71 hot fire)
- Thruster Fabrication
- Dual Bell Nozzle (CFD)

Lockheed Martin Demonstrations

Linear Aerospike Verification

Verify Integrated Lifting Body/
 Engine Aero Characteristics and
 Performance Effects on Engine

• CFD

- Vehicle Flowfield
- Model Support
- SR-71 Support
- Wind Tunnel (Cold Flow)
 - Solid Plume (0.4% Scale)
 - Slipstream (2.2% Scale)

Linear Aerospike Engine Enhancements

- Low Cost Thruster Mfg. Process
- Showerhead: Low Torque (36:1 reduction)
- EMA: Operability

• Engine Modular Thruster (2)

- HIP Bonding Process
- Hot Fire Test
- Round-to-Rectangular Exit
- Designed for X-33

• EMA Propellant Valve

- Full Scale, Flight Weight
- Req'd for Differential Throttle
- Designed for X-33

Electric Actuation

- Operability
- Complements On-Going ELV
 Work w/ Focus on Power Sources
- Control Surfaces and Propellant Valve Actuation Req'ts
- Test Battery and Super Capacitor Designs (w/ LeRC ELV Actuator)
- Detailed Simulations to Bridge Results to LADC SSTO Concept

